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Introduction

Most calculus students are familiar with the concept of a Taylor polynomial

and some of the associated results. While these polynomials can be made

arbitrarily close to certain functions on a closed interval, they require that

the functions be analytic (highly differentiable) which is a relatively small

subclass of functions. This raises the question of whether this condition is

actually necessary for a function to be approximated on a closed interval,

to an arbitrary degree, by a polynomial. It turns out, as Karl Weierstrass

proved with the Weierstrass Approximation Theorem, it is only necessary

for f to be continuous on the closed interval in order for such polynomials

to exist.
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Introduction

Marshall Stone, with the Stone-Weierstrass theorem, generalized the result

to any continuous function that maps the elements of a compact Hausdorff

space into R. This result also generalizes the approximating functions from

polynomials to the members of a subalgebra of the continuous functions

that map K to R.

The classical Weierstrass Approximation Theorem states that any

continuous real-valued function defined on a bounded closed interval of real

numbers can be approximated uniformly by polynomials. In this lecture, we

discuss Weierstrass Approximation Theorem and some generalizations.
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Notations

R the set of real numbers.

C the set of complex numbers.

K compact Hausdorff space.

C (K ,R) the set of continuous functions from K to R.
C (K ,C) the set of continuous functions from K to C.
P(K ,R) the space of polynomials from K to R with real coefficients.

P(K ,C) the space of polynomials from K to C with complex coefficients.
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Brook Taylor : 1685 - 1731

Brook Taylor was an English mathematician best known for creating

Taylor’s theorem and the Taylor series, which are important for their use in

mathematical analysis. Taylor series of a function is an infinite sum of

terms that are expressed in terms of the function’s derivatives at a single

point. For most common functions, the function and the sum of its Taylor

series are equal near this point.

The partial sum formed by the first n + 1 terms of a Taylor series is a

polynomial of degree n that is called the nth Taylor polynomial of the

function. Taylor polynomials are approximations of a function, which

become generally better as n increases1.

1Source : Wikipedia
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Brook Taylor : 1685 - 1731

Taylor’s theorem gives quantitative estimates on the error introduced by

the use of such approximations.
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Madhava of Sangamagrama : 1350 - 1425

In the 14th century, the earliest examples of the use of Taylor series and

closely related methods were given by Madhava of Sangamagrama.

Though no record of his work survives, writings of later Indian

mathematicians suggest that he found a number of special cases of the

Taylor series, including those for the trigonometric functions of sine, cosine,

tangent, and arctangent2.

2Source : Wikipedia
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Madhava of Sangamagrama : 1350 - 1425

The Kerala School of Astronomy and Mathematics further expanded his

works with various series expansions and rational approximations until the

16th century.
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Karl Weierstrass : 1815 - 1897

Karl Weierstrass was a German mathematician often cited as the “father
of modern analysis”. Despite leaving university without a degree, he

studied mathematics and trained as a school teacher, eventually teaching

mathematics, physics, botany and gymnastics. He later received an

honorary doctorate and became professor of mathematics in Berlin3.

Weierstrass Approximation Theorem, one of the most important results

in approximation theory is due Karl Weierstrass, proved in 18854 (when he

was 70 years old!).

3Source : Wikipedia
4K. Weierstrass (1885). Uber die analytische Darstellbarkeit sogenannter willkrlicher

Functionen einer reellen Vernderlichen. Sitzungsberichte der Kniglich Preuischen
Akademic der Wissenschaften zu Berlin, 1885 (11).
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Karl Weierstrass : 1815 - 1897

Among many other contributions, Weierstrass formalized the definition of

the continuity of a function, proved the intermediate value theorem and the

Bolzano-Weierstrass theorem, and used the latter to study the properties of

continuous functions on closed bounded intervals5.

5Source : https://mathshistory.st-andrews.ac.uk/
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Several Proofs

There are now several different proofs that use vastly different approaches.

One well-known proof was given by Sergei Bernstein in 1911. His proof uses

only elementary methods and gives an explicit algorithm for approximating

a function by the use of a class of polynomials now bearing his name.

A constructive proof for Weierstrass Approximation Theorem was given by

Bernstein in 1911 and is taken from the book by Davidson and Donsig6.

6K. Davidson and A. Donsig. Real Analysis with Real Applications. Prentice Hall,
Upper Saddle River, N.J., 2002.
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Sergei Bernstein : 1880 - 1968

Sergei Bernstein was a Ukranian mathematician who made important

contributions to partial differential equations, differential geometry,

probability theory and approximation theory7.

7Source : https://mathshistory.st-andrews.ac.uk/
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Bernstein Polynomials

The Bernstein polynomials, which play a central role in Bernstein’s proof,

are introduced below.

Definition 1 (Bernstein Polynomials).

For each n ∈ N, the nth Bernstein polynomial of a function f ∈ C ([0, 1],R)

is defined as

Bn(f )(x) :=
n∑

k=0

f

(
k

n

)(
n

k

)
xk(1− x)n−k .
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Bernstein Theorem

Theorem 2 (Bernstein Theorem).
Let f ∈ C ([0, 1],R). Then Bn(f )→ f uniformly as n→∞.

Outline of the proof :

1. Let f ∈ C([0, 1],R) and ε > 0. Since f is continuous on [0, 1],
M : ‖f ‖∞ = {|f (x)| : x ∈ [0, 1]} <∞ ; ∃δ > 0 such that
|x − y | < δ ⇒ |f (x)− f (y)| < ε

2 , for all x , y ∈ [0, 1].

2. For each ξ ∈ [0, 1], |Bn(f )(x)− f (ξ)| ≤ 2M(x−ξ)2

δ2 + 2M(x−x2)
δ2 + ε

2 , for all x ∈ [0, 1].

3. In particular, |Bn(f )(ξ)− f (ξ)| < ε
2 + M

2δ2n .

4. Choose N > M
δ2ε . Then |Bn(f )(ξ)− f (ξ)| < ε, for all ξ ∈ [0, 1].

Remark 3.
Note that the techinques used in the above proof can be modified to show that if f is bounded
on [0, 1] and f is continuous at x0 ∈ [0, 1], then the sequence Bn(f )(x0)→ f (x0) as n→∞.
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Weierstrass Approximation Theorem

Theorem 4 (Weierstrass Approximation Theorem).
Let f ∈ C ([a, b],R). Then there is a sequence of ploynomials pn(x) that

converges uniformly to f (x) on [a, b].

Outline of the proof :

1. Let f ∈ C([a, b],R). Consider the function φ : [0, 1]→ [a, b] defined by
φ : x 7→ a + (b− a)x . The composite function g := f ◦φ is a continuous function on [0, 1].

By Bernstein theorem, for ε > 0, there exists a polynomial q such that ‖q − g‖∞ < ε.

2. Define ψ : [a, b]→ [0, 1] by ψ(x) = x−a
b−a

, ψ(x) is a polynomial. Let p(x) = q( x−a
b−a

) and p

is a polynomial in x .

3. Since φ ◦ ψ is the identity mapping on [a, b], and g = f ◦ φ, we see that
g ◦ ψ = f ◦ φ ◦ ψ = f .

4. Let x ∈ [a, b]. Then since ψ(x) ∈ [0, 1], we have |p(x)− f (x)| = |q(ψ(x)− g(ψ(x))| < ε.
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Bernstein’s Proof of Weierstrass Approximation Theorem

The above proof relied on only elementary methods.

The method of using Bernstein polynomials to prove the Weierstrass

Theorem gives use a constructive method of finding a sequence of

polynomials which converge uniformly on [a, b] to the given continuous

function.
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Weierstrass Approximation Theorem

One can easily prove the complex version of the Weierstrass Approximation

Theorem. Note that C ([0, 1],C) is a Banach space with respect to the

supremum norm, ‖.‖∞. We denote the set spanned by S by SpanC{S}.

Theorem 5 (Weierstrass Approximation Theorem).
Let f ∈ C ([0, 1]),C and let ε > 0. Then, there exists a polynomial p (with

complex coefficients) such that

‖f − p‖∞ := sup{|f (x)− p(x)| : x ∈ [0, 1]} < ε

In other words, SpanC{xn : n ∈ N ∪ {0}} is dense in the Banach space

C ([0, 1],C) with the supremum norm, ‖.‖∞.
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Weierstrass Approximation Theorem

There is a natural question that how many exponents are needed in

order to have density in C ([0, 1],C). In 1912, at the Cambridge

International Congress of Mathematicians, Bernstein posed this problem

from the Weierstrass’s result. Bernstein himself had worked on this

problem, and he had proved that the condition

∞∑
k=1

1 + log λk
λk

=∞.

is necessary for density, and also that

lim
k→∞

λk
k log λk

= 0

is sufficient.

P. Sam Johnson Weierstrass Theorem and Some Generalizations 18/38



Herman Müntz (1884-1956) ; Otto Szász (1884-1952)

Two years later, in 1914, Benstein’s conjecture was proven to hold by

Müntz. The original proof of Müntz was simplified by Szász in 1916.

Müntz8 Szász9

8Source : Wikipedia
9Source : Wikipedia
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Muntz-Szasz Theorem

Theorem 6 (Muntz-Szasz).
Let {λn}∞n=1 be an increasing sequence of positive real numbers. Then,

SpanC

{
xλn : n ∈ N ∪ {0}

}
is dense in C ([0, 1],C) if and only if

∞∑
n=1

1
λn

=∞.
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Muntz-Szasz Theorem

In 1916, Szasz published an article where he completed the proof, further

improving and simplifying it. Muntz’s demonstration uses real variable

techniques and is based on estimating the distance between any continuous

function to certain finite subspaces of polynomials, which can be made as

small as desired. Szasz’s proof makes use of complex variable techniques

combined with some arguments of functional analysis. The proof we

presented here can be found in Rudin’s book10 and followed Szasz’s ideas.

10Walter Rudin. Principles of Mathematical Analysis, McGraw-Hill, Inc.
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Stone-Weierstrass Theorem

In 1937, Marshall H. Stone considerably generalized the theorem and then

simplified the proof in 1948. His result is known as the Stone-Weierstrass

Theorem. This theorem generalizes the Weierstrass Approximation

Theorem in two ways:

1. Instead of the real interval [a, b], an arbitrary compact Hausdorff space

K is considered, and

2. Instead of the algebra of polynomial functions, Stone investigated the

approximation with elements from more general algebras of C (K ,K).
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Marshall H. Stone

It will be seen that the Weierstrass Approximation Theorem is in fact a

special case of the more general Stone-Weierstrass Theorem, proved by

Stone in 1937, who realized that very few of the properties of the

polynomials were essential to the theorem. Although this proof is not

constructive and relies on more machinery than that of Bernstein, it is

much more efficient and has the added power of generality.
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Basic Concepts

The introduction of some new concepts and results is required before the

proof of the Stone-Weierstrass Theorem can be approached.

Definition 7 (unital sub-algebra, separating points).
Let K be a compact metric space. Consdider the Banach algebra

C(K ,R) := {f : K → R | f is continous}

equipped with the sup-norm, ‖f ‖∞ := sup
t∈K
|f (t)|. Then

1. A ⊂ C(K ,R) is a unital sub-algebra if 1 ∈ A and if f , g ∈ A, α, β ∈ R implies that
αf + βg ∈ A and fg ∈ A.

2. A ⊂ C(K ,R) seperates points of K if for all s, t ∈ K with s 6= t, there exists f ∈ A such
that f (s) 6= f (t).

3. Furthermore, if, for all f , g ∈ C(K ,R) and x ∈ K , we define fg by (fg)(x) = f (x)g(x), it
follows that fg ∈ C(K ,R). Thus, we see that C(K ,R) actually forms an algebra over R.

P. Sam Johnson Weierstrass Theorem and Some Generalizations 24/38



Basic Concepts

The above definition can also be generalized by replacing the requirement

that K be a compact metric space by requiring that K be a compact

topological space.

Remark 8.
(a) It follows from the above definition that if A is a unital sub-algebra,

then all constant functions are elements of A.

(b) Let P([a, b],R) be the space of polynomials from [a, b] to R. It is
easily checked that P([a, b],R) is a unital sub-algebra and separates

points.
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Basic Concepts

Before stating and proving the Stone-Weierstrass Theorem a useful lemma

about closed sub-algebras will be proven. The following definition must

first be made.

Definition 9 (Lattice).
A subset S ∈ C(K ,R) is a lattice if, for all f , g ∈ S, f ∨ g ∈ S and f ∧ g ∈ S , where
(f ∨ g)(x) := max{f (x), g(x)} and (f ∧ g)(x) := min{f (x), g(x)}.

Lemma 10.
Let A ⊂ C(K ,R) be a closed unital sub-algebra. Then

i) if f ∈ A and f ≥ 0, then
√
f ∈ A;

ii) if f ∈ A, then |f | ∈ A;

iii) A is a lattice.
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Basic Concepts

We are now in a position to state and prove the Stone-Weierstrass theorem.

The theorem was first proved by Stone in 193711. However, he greatly

simplified his proof in 1948 into the one that is commonly used today12.

Theorem 11 (Stone-Weierstrass Theorem).
Let K be a compact metric space and A ⊂ C (K ,R) a unital sub-algebra

which separates points of K . Then A is dense in C (K ,R).

11M. Stone (1937). Applications of the Theory of Boolean Rings to General Topology.
Translations of the Americain Mathematical Socienty 41(3), 375 − 481.

12M. Stone (1948). The Generalized Weierstrass Approximation Theorem.
Mathematics Magazine 21(21), 167 − 184 and 21(5), 237 − 254.
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Basic Concepts

Remark 12.
An equivalent statement is that if A is a closed unital subalgebra that

separates points of a compact set K , and A ⊂ C (K ,R), then

A = C (K ,R). We will proceed using this formulation.

Corollary 13.
Let K be a compact subset of Rn for some n ∈ N. Then the algebra of all

polynomials P(K ,R) in the coordinates x1, x2, . . . , xn is dense in C (K ,R).

The case in which n = 1 in the above corollary is the Weierstrass

Approximation Theorem.
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Proof of Stone-Weierstrass Theorem
Outline of the proof :

1. Let f ∈ C(K ,R) and ε > 0. Let s, t ∈ K with s 6= t. Since A separates K , ∃h ∈ A such
that h(s) 6= h(t).

2. Define fst(x) = f (t) + {f (s)− f (t)} h(x)−h(t)
h(s)−h(t)

. As A is a closed unital subalgebra, fst ∈ A
with fst(s) = f (s) and fst(t) = f (t).

3. Fix s ∈ K and let t vary. Let Ut = {x ∈ K : fst(x) < f (x) + ε}. Since t ∈ Ut and Ut is
open, ∪

t∈K
Ut is an open cover of K . Hence by compactness of K , K ⊂

⋃
16i6n

Uti , for some

ti ∈ K , 1 ≤ i ≤ n. Let hs := min
16i6n

fsti . So hs ∈ A, hs(s) = f (s) and hs < f + ε.

4. Let Vs = {x ∈ K : hs(x) > f (x)− ε}. Since s ∈ Vs and Vs is open, ∪
s∈K

Vs is an open

cover of K . Hence by compactness of K , K ⊂
⋃

16j6m
Vsj , for some sj ∈ K , 1 ≤ j ≤ m. Let

g := max
16j6m

hsj . So g ∈ A, g > f − ε and g < f + ε. Thus ‖f − g‖∞ < ε.
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Stone-Weierstrass Theorem

The Stone-Weierstrass Theorem can be used to prove the following two

statements which go beyond Weierstrass’ results.

1. If f is a continuous real-valued function defined on the set

[a, b]× [c , d ] and ε > 0, then there exists a polynomial function p in

two variables such that |f (x , y)− p(x , y)| < ε for all x ∈ [a, b] and

y ∈ [c , d ].

2. If X and Y are two compact Hausdorff spaces and f : X × Y → R is

a continuous function, then for every ε > 0 there exist n > 0 and

continuous functions f1, f2, . . . , fn on X and continuous functions

g1, g2, . . . , gn on Y such that ‖f −
∑

figi‖C([a,b]×[c,d ],R) < ε.
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Basic Results

Theorem 14 (Stone-Weierstrass Theorem).
Suppose A is a subalgebra of C (K ,R) that separates points, where K is a

compact Hausdorff space. If there exists x0 ∈ X such that f (x0) = 0 for all

f ∈ A, then A is dense in {f ∈ C (K ,R) : f (x0) = 0}. Otherwise, A is

dense in C (K ,R).

Theorem 15 (Stone-Weierstrass Theorem (Restatement)).
If A is a closed subalgebra of C (K ,R) that separates points, then either

A = C (K ,R) or A = {f ∈ C (K ,R) : f (x0) = 0} for some x0 ∈ K .
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Basic Results

We shall now illustrate the Stone-Weierstrass Theorem in which K consists

of only two points, x1 and x2. Since any function f : K → R is described

entirely by the image of x1 and x2, each function can be represented by the

ordered pair (f (x1), f (x2)). Thus, it will suffice to consider the closed

subalgebras of R2.
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Basic Results

Lemma 16.
Consider R2 as an algebra under coordinate addition and multiplication.

The only subalgebras for R2 are R2, {(0, 0)},{(x , 0) : x ∈ R},
{(0, x) : x ∈ R}, and {(x , x) : x ∈ R}.

Proof. Since each one of these sets is closed under coordinatewise addition and multiplication,

they each form a subalgebra of R2. To see that these are the only ones, consider a point

(a, b) ∈ A. If A contains a point such that a 6= b 6= 0, then (a, b) and (a2, b2) are linearly

independent. As a result, A = R2. Now, the cases a = b 6= 0, a 6= 0 = b, or a = 0 6= b generate

the other three nonzero subalgebras mentioned above. Finally, the only case remaining is if the

only point happens when a = b = 0, which corresponds to the set {(0, 0)}. Thus, the

subalgebras mentioned above are the only possibilities.
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Proof of Stone-Weierstrass Theorem

Let Axy = {(f (x), f (y)) : f ∈ A}. Now, since A is a subalgebra of

C (K ,R), Axy is a subalgebra of R2. Therefore, Axy is either R2,

{(0, 0)}, {(x , 0) : x ∈ R}, {(0, x) : x ∈ R}, or {(x , x) : x ∈ R}. Now, since
A separates points, Axy cannot be {(0, 0)} or {(x , x) : x ∈ R}. If
Axy = R2, then A = C (K ,R). Finally, if Axy is {(x , 0) : x ∈ R} or
{(0, x) : x ∈ R}, then there exists some x0 ∈ R2 such that f (x0) = 0 for all

f ∈ A. Furthermore, we have that A = {f ∈ C (K ,R) : f (x0) = 0}.
Finally, note that if A contains a constant function, then there does not

exist an x0 such that f (x0) = 0 for all f ∈ A. Thus, A = C (K ,R).
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Stone-Weierstrass Theorem

We can also use the Stone-Weierstrass Theorem to prove the complex

Stone-Weierstrass Theorem. The complex version, however, requires

additional assumptions. The following proof is taken from a book by

Sohrab13.

Theorem 17 (Complex Stone-Weierstrass Theorem).
Let A be a (complex) unital sub-algebra of C (K ,C), such that if f ∈ A,

then f̄ ∈ A, and A separates points of K . Then, A is dense in C (K ,C).

Outline of the proof : Let f ∈ A. Then Re(f ) = f +f̄
2 and Im(f ) = f−f̄

2i are in A. Let AR

denote the unital sub-algebra of A containing real-valued functions. Hence
A = {g + ih : g , h ∈ AR} is dense in C(K ,C) = C(K ,R) + iC(K ,R).

13H. Sohrab. Basic Real Analysis. Birkhauser, New York, N.Y., 2003.
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Trignometric Polynomials

A result similar to the Weierstrass Approximation Theorem occurs in the

theory of Fourier series, and was also first proved by Weierstrass. It states

that a continuous 2π-periodic real-valued function can be uniformly

approximated on [a, b] by the trignometric polynomials. The space of all

continuous 2π-periodic real-valued functions is denoted by Cper ([0, 2π],R).

Definition 18.
The space of real-valued trignometric polynomials T P(R,R) are

functions f : R→ R which are finite sums of the form

f (x) = a0 +
N∑

n=1

(an cos(nx) + bn sin(nx)).
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Trignometric Polynomials

Theorem 19.
The set of all trignometric polynomials are uniformly dense in

Cper ([0, 2π],R).

Outline of the proof : We identity Cper ([0, 2π],R) with C(T,R), where

T = {(x , y) ∈ R2 : x2 + y2 = 1} is the unit circle. Let t 7→ (cos t, sin t). Then the trigonometric

polynomials in x , y on T, which are dense C(T,R).

Note that the above corollary can be easily generalized for Cper ([a, b],R).
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